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Abstract

This paper presents new experimental results of Vortex-Induced Vibration (VIV) on inclined cylinders. Models are

mounted on a low damping air-bearing elastic base with one degree-of-freedom, constrained to oscillate only in the

transverse direction to a free stream. The Reynolds number varied in the range 2000tRet8000. New measurements

on the dynamic response oscillations of inclined cylinders, due to VIV, are compared with previous experiments of a

vertical cylinder. Models with circular and elliptical cross sections have been tested. The purpose of this work is to check

the validity of the normal velocity correction of VIV studies of inclined structures. The results show that the reduced

velocity range, in which the upper and lower branches of VIV occurs, is similar to the vertical cylinder case if the proper

projected velocity is considered. Tests have been conducted to support this observation with inclinations up to 45�. We

have also observed that the amplitudes of oscillation of the inclined circular cylinder are comparable, but slightly lower

than, to the amplitudes observed in the vertical cylinder experiments. Measured forces and added mass also show

similar behaviour. However, for cases with an elliptical cylinder, the amplitudes of oscillation are considerably lower

than those observed for a circular cylinder. This difference is explained by the higher added mass of the elliptical

cylinder.

r 2009 Elsevier Ltd. All rights reserved.

Keywords: Vortex-Induced Vibration; Flow around inclined cylinders; Bluff body
1. Introduction

Long risers are used in the exploration of petroleum and natural gas, and they are hanged in catenary from platforms

to the seabed. The flow around these structures are subject to vortex shedding, an unsteady phenomenon that modifies

the pressure field on the risers’ surface, causing an oscillatory force that acts in the riser. If the vortex shedding

frequency is close to one of the natural frequencies of oscillation, the structure can oscillate at high amplitudes. Such

kind of oscillation is usually known as Vortex-Induced Vibration (VIV). The papers written by Sarpkaya (1979),

Parkinson (1989), Bearman (1984) and Williamson and Govardhan (2004) are excellent surveys on the subject.
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VIV is a self-regulated and self-excited phenomenon, so it can lead to fatigue failure. Most of the algorithms of

fatigue analysis of risers subjected to VIV considers that the flow around an inclined cylinder can be considered

equivalent to the one in which the free stream velocity is projected on to the direction orthogonal to the cylinder axis

[see Yamamoto et al. (2004) and Meneghini et al. (2004)]. In the present work, this simplification is referred as the

normal velocity correction to VIV on inclined cylinders. The main objective of this paper is to check and discuss the

validity of such approximation.

We can remark two experimental investigations concerning VIV problem in which the flow is not normal to the

cylinder axis. Ramberg (1983) presents results for forced oscillations and at a lower Reynolds number range (160–1000).

Yttervik et al. (2003) studied long flexible cylinders immersed in currents at large experimental facilities. A numerical

study of the flow around a curved cylinder and its three dimensionalities effects on the wake pattern were carried out by

Miliou et al. (2007).

This paper presents new measurements of VIV of inclined cylinders, in a Reynolds number range between Re � 2000

and 8000. The experiments have been carried out in a very well controlled experimental facility. In order to check the

validity of the normal velocity correction, the present investigation has been carried out testing a rigid cylinder mounted

on an low damping elastic base, inclined in relation to the vertical by an angle y ¼ 20� and 45�. The results for these

configurations are compared with those of a cylinder vertically mounted on the elastic base. The influence of the

immersed length is also discussed.
2. Experimental arrangement

Tests were conducted at the Fluid-Dynamics Research Group Laboratory (NDF) of the University of São Paulo

(USP). The circulating water channel facility had ð0:70� 0:80� 7:50Þm test section. This channel operates at a low

turbulence level ðo2%Þ, and can operate at good quality and well controlled flows up to 0.7m/s. Rigid cylinder models

were made of plexiglas with diameter D ¼ 32mm and wet-length L ¼ 585 and 773mm. In all experiments, the mass

parameter (m� ¼ 4m=prD2L, where m is the moving system mass) was kept constant and equal to approximately 2.5.

This mass parameter is defined as the ratio of the mass of moving parts by the displaced mass of water. Cylinders were

vertically clamped by their upper end at an air-bearing elastic base fixed on the channel structure and terminated at their

lower end with a 3.0mm gap on to the test section floor. The lower ends of the models were parallel to the channel floor.
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The base had a very low structural damping coefficient ðz � 0:5%Þ, leading to a mass-damping parameter

m�z ¼ 0:0125. The open section channel facility was equipped with glass walls and floor, offering a complete view of the

models. Further details regarding the circulating water channel can be found in Assi et al. (2006).

Forces were measured using an ATI (NANO25) load cell fixed on the model, and the crosswise vibration was

measured employing a LEUZE (ODSL 8/V4 model) laser position sensor. Fig. 1(a) shows a typical decay test result in

air, and Fig. 1(b) shows the experimental set up for the inclined cylinder tests.

Three sets of experiments were conducted, with the cylinder free to oscillate only transversely to flow direction. In the

first set, vertical cylinders with maximum immersed lengths L ¼ 585 and 773mm were tested. Two different immersed

lengths were employed in order to check the influence of this length on the response. As the results showed no

discernable difference, the shorter cylinder was employed. This condition is referred to as the vertical condition, and all

the other results were then compared to this case.

In the second set of experiments, the circular cylinder was mounted not vertically but inclined in relation to the

vertical. For both inclinations, the immersed length was kept constant and equal to 585mm. The amplitude and

frequency of oscillation versus reduced velocity, together with drag and lift coefficients were obtained and compared to

the vertical cylinder condition.

In the third set of experiments, an elliptical cylinder, with immersed length 585mm, was investigated. The cross

section area of this elliptical cylinder is made equal to the intersection area of an horizontal plane with the circular

cylinder inclined by an angle y ¼ 45�.
3. Results and discussion

The dynamic responses of the models are described in terms of the nondimensional amplitude A=D versus

the reduced velocity Vr ¼ U=f nD. The natural frequency ðf nÞ was obtained for each case from decaying tests in water.
0.00

0.20

0.40

0.60

0.80

1.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

A
∗

Vr = U/fnD

Vertical cylinder L/D = 24
Vertical cylinder L/D = 18
Khalak & Williamsom [1999]

0.00

1.00

2.00

3.00

4.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

f∗ =f
/f n

Vr = U/fnD

Vertical cylinder L/D = 24

Vertical cylinder L/D = 18

2.50
Vertical cylinder L/D = 24

2.00 Vertical cylinder L/D = 18

1.50

1.00

ue
)

ea
n 

va
lu

C
D

(m
e

0 00

0.50

0.00
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

Vr = U/fnD

2.50
Vertical cylinder L/D = 24

Vertical cylinder L/D = 18
2.00

Vertical cylinder L/D = 18

1.50

1.00

(R
M

S
)

C
L

0 00

0.50

0.00
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

Vr = U/fnD
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Amplitude of oscillation A�; (b) normalised frequency response f �; (c) mean drag coefficient CD; (d) r.m.s. of lift coefficient CLrms
.



ARTICLE IN PRESS
G.R. Franzini et al. / Journal of Fluids and Structures 25 (2009) 742–750 745
The plot of the reduced frequency f =f n versus Vr was also obtained (f is the oscillation frequency). Amplitudes were

calculated by taking the average of the 10% highest peaks recorded on the time history of displacement. Reynolds

number (calculated with diameter D and flow velocity U) range from Re � 2000 to 8000 in all experiment cases. The

reduced velocity Vr range extended to a maximum value of 14 for all tested cases.
3.1. First set of experiments: vertical circular cylinder

In the first set of experiments, a vertical circular cylinder was tested in the range of reduced velocity 3oVro14. This

range is large enough to identify the lock-in region, where the higher amplitudes are observed.

In order to analyse the influence of the immersed length on the results, two cylinders have been tested, one with an

immersed length L ¼ 773mm and the other with L ¼ 585mm. These two cases have aspect ratios L=D � 24 and 18,

respectively. In both, the cylinder mass parameter was kept approximately constant ðm� � 2:5Þ. A free-decay test in

water has been carried out and the natural frequency f n ¼ 0:48Hz was obtained from this test. The reduced velocity

was calculated with this natural frequency. The results of amplitude of oscillation for these vertical cylinders are shown

in Fig. 2(a), together with those measured by Khalak and Williamson (1999). As one can observe in this figure, the

maximum amplitude is very close to the one measured by Khalak and Williamson (1999). This small difference can be

explained considering that the parameters from both experiments are not exactly the same. Also, one can notice that the

lower branch in our experiments, employing the classification proposed by Khalak and Williamson (1999), is shorter

and the amplitude drops more steeply. Probably, the differences of both experiments in the parameters are the cause of

such disagreement. However, in the present experimental results it is possible to notice a small range of Vr in which the

amplitude of oscillation is approximately 0:6D, the same value of amplitude observed in Khalak and Williamson (1999)

in the lower branch.

The amplitude of oscillation is shown in Fig. 2(a), the normalised frequency response ðf �Þ in Fig. 2(b), the mean drag

coefficient ðCDÞ in Fig. 2(c), and the rms of lift coefficient ðCLrms
Þ in Fig. 2(d). As we can see analysing these figures, there

are no noticeable differences among the results obtained with vertical cylinders with those two immersed lengths.
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The case with an immersed length L ¼ 585mm has been chosen to be compared with the inclined circular cylinder

(second set of experiments) and the elliptical cylinder results (third set of experiments).

As it can be seen in Fig. 2, the observed peak of nondimensional amplitude ðA� ¼ A=DÞ is about 0:80 and it occurs

for reduced velocity Vr close to 5.6. For each value of Vr, the time series of movement was recorded and the value of

nondimensional amplitude was calculated through the mean of the 10% highest peaks of the signal. Using the modified

Griffin plot, see Govardhan and Williamson (2006), for a mass ratio m� ¼ 2:5 and structural damping z ¼ 0:5%, the

peak of nondimensional amplitude is 0:84 which is very close to the observed value of maximum amplitudes of our

experiments with this vertical cylinder. The plot of frequency ratio f � has the same shape as the one presented in Khalak

and Williamson (1999) for a similar value of m�. The peaks of drag and lift coefficients occur at the same reduced

velocity as the peak of A�, reaching the values CD ¼ 2:3 and CL ¼ 1:9. It is possible to see the ‘‘sharp shape’’ of the

CL plot and the asymptote value 1:2 of the drag coefficient for Vr410. So, the results of our first set of experiments

agree very well with those found in the literature. Due this fact, these results consist of a reliable data set for comparison

with the ones obtained from the other sets of experiments.
3.2. Second set of experiments: inclined circular cylinder

In the second set of experiments, the circular cylinder was mounted inclined in relation to the vertical axis. Two

angles y have been tested: y ¼ 20� and 45�. Both test conditions had immersed lengths L ¼ 585mm, leading to an aspect

ratio L=D ¼ 18. The lower edge of the cylinder was parallel to the channel floor.

The results for the condition with y ¼ 20� are shown in the Fig. 3. The maximum value of A� is slightly below 0:70
and occurs at Vr � 526, as can be seen in Fig. 3(a). The value of maximum lift coefficient occurs at the same value of

reduced velocity (Fig. 3(d)). Fig. 3(c) shows that the maximum value of drag coefficient is slightly lower than the one

measured in the vertical cylinder case.

For the condition with y ¼ 45�, the maximum value of A� is close to 0:70, as can be seen in Fig. 4(a). Analysing

Figs. 4(c) and (d), we also observed a significant reduction on the maximum value of lift and drag coefficients. As it will
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Fig. 4. Free oscillation of a circular cylinder, inclined at 45�, and mounted on an elastic base. (a) Amplitude of oscillation A�;
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be shown in (4), CL results collapse to similar curves if the proper projected velocity is employed for the evaluation of

the force coefficients.

3.3. Third set of experiments: a vertical elliptical cylinder

In the third set of experiments, a vertical cylinder with elliptical cross section was tested. The cross section area was

made equal to the intersection area of a horizontal plane with the circular cylinder inclined by an angle y ¼ 45�. The

immersed length of the model was kept at L ¼ 585mm. The purpose of this set of experiments is to check the differences

between the dynamics of an inclined circular cylinder, with the free stream acting over an apparent elliptical cross

section, and a vertical cylinder with the same elliptical cross area.

Analysing Fig. 5(a), one can notice that the response curve of A� shows three well-defined branches. The first one

starts at Vr � 3:7 and ends at Vr � 6:5 and represents the cylinder with no or very low amplitudes of oscillation. The

second branch is in the range 4oVro12 and the amplitude varies from 0:40 to 0:57. The last branch occurs for Vr in

the range from 12 to 17, and consist in a region with values of A� almost constant and close to 0:12.
4. Comparison of vertical and inclined cylinder results

In order to check the validity of the classical approach of VIV on inclined cylinders, the results from the three sets of

experiments are compared by evaluating the reduced velocity with the component of the freestream in the normal

direction to the cylinder axis. The normal reduced velocity to the cylinder axis is given by

Vr;n ¼
U cos y

f nD
. (1)

The results for all cases with the effective reduced velocity evaluated in this way are shown in Fig. 6. Analysing Fig. 6(a),

we can notice that the maximum value of A� observed in the first set of experiments is slightly higher than those
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Fig. 5. Free oscillation of an elliptical cylinder mounted on an elastic base. (a) Amplitude of oscillation A� versus the reduced velocity V r;

(b) frequency response through the synchronisation regime; (c) mean drag coefficient CD; (d) r.m.s. of lift coefficient CLrms
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measured in the inclined cylinder cases. In the initial branch of oscillation ð3:5tVr;nt4:5Þ, the response amplitudes are

very similar for all inclinations. The amplitudes of oscillation of the inclined circular cylinders are comparable, but

slightly lower than, to the amplitudes observed in the vertical cylinder experiments. Furthermore, the maximum

amplitude of oscillation occurs in the same range of reduced velocity, if the latter is evaluated with the velocity

component normal to the cylinder axis.

Comparing the frequency response (Fig. 6(b)), the agreement is also noticeable for all inclinations. Moreover, both

the lift (Fig. 6(d)) and drag (Fig. 6(c)) coefficients decrease as the inclination increases, as expected. However, if the lift

coefficient is evaluated with the normal velocity ðCL ¼ 2FL=rðU cos yÞ2LDÞ, the values of CL for all inclinations follow

a similar behaviour in the range of reduced velocity tested, as one can see in Fig. 7.

The comparison between the circular cylinder case with y ¼ 45� and the elliptical model shows that the last one has

not depicted a defined upper-branch. In the elliptical model, the branch with the highest amplitudes corresponded

approximately to the same amplitudes found in the lower branch of the vertical circular cylinder case.

In order to carry out a more detailed study of the lift force, the added mass ma was evaluated. The added mass, ma,

defined as the term of the lift force in phase with the acceleration of the cylinder. Then, this paper does not consider the

added mass using the potential approach. The lift force was decomposed using the following equation:

FLðtÞ ¼ �ma €y� cv _y, (2)

where cv is the hydrodynamic damping coefficient.

Using the frequency domain described in Fujarra and Pesce (2002), we obtained the added mass coefficient,

Ca ¼ 4ma=rpD2L. The plot of Ca versus Vrr;n are show for all cases tested in Fig. 8. Ca for the vertical cylinder case has

a zero-crossing at about Vr;n � 8, and an asymptotic value Ca !�1, as Vr;n increases. This result is in agreement with

those published by Vikestad et al. (2000).

In the interval 4oVr;no6, the added mass coefficient is similar for both inclined cylinder cases (y ¼ 20� and 45�).

However, the elliptical model has typical values of Ca higher than those found in the circular cylinder cases,
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independently of the inclination of the later. This behaviour can be explained considering the fact that the elliptical

cylinder has its bigger axis aligned with the flow direction, which implies a higher added mass in the cross flow direction.

5. Conclusion

The results for inclined circular cylinders mounted on an elastic base were found to be partially similar to the results of a

vertical cylinder oscillating in the transverse direction. The reduced velocity range, in which the upper and lower branch of

VIV occurs, is similar to the vertical cylinder case if the proper projected velocity is considered for the determination of

reduced velocity. The amplitudes of oscillation of the inclined cylinders are comparable, but slightly lower than, to the

amplitudes observed in the vertical cylinder experiments. The response amplitudes are very similar for all inclinations in

the initial branch of oscillation. The maximum amplitude of oscillations of the inclined cylinder cases occur in the same

range of reduced velocity. There is an agreement in frequency response as well. Moreover, both the lift and drag

coefficients decrease as the inclination increases, as expected. However, if the lift coefficient is evaluated with the normal

velocity, the values of CL for all inclinations follow a similar behaviour in the range of reduced velocity tested.

The results with an elliptical cylinder oscillating in the transverse direction were found to have a different behaviour.

The amplitudes of oscillation are considerably lower than those observed for a circular cylinder. This difference can be

explained by the higher added mass of the elliptical cylinder. The experiments shown in this paper are part of an

ongoing research project. Further work will include higher inclination angles, two-degree of freedom experiments, and

PIV measurements.
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